弾塑性圧縮過程における付着性粒子の高密度化に関する数値解析

Numerical Analysis in Densification of Cohesive Particles during Elastoplastic Compression

矢野 武尊^{*} Takeru Yano

1. はじめに

粉体の圧縮成形は、粉体に直接圧縮力をかけることで成形 体を作製する粉体成形手法の一つである。圧縮成型時の粉体 挙動は成形体の構造に大きく影響を与えることが知られてい るが、因子はきわめて多く複雑であるため、まだ充分に粉体 圧縮時の緻密化機序は明らかとなっていない。特に粒子付着 性や塑性変形性は粉体圧縮後の成形体構造に与える影響が大 きいものの、緻密化現象の詳細な解析は不充分である。本研 究では、付着性弾塑性粉体の圧縮プロセスの緻密化現象につ いて粒子の付着性と塑性変形性、粒子径分布に焦点を当てて、 実験および数値解析により圧縮成形挙動と成形体の充填構造 の関係を明らかとすることを目的とした。

2. 主な研究成果

2.1 異なる塑性変形性を有する混合粉体を用いた成形体の強度予測 [1]

錠剤強度は、錠剤の重要な特性である崩壊性、溶出性、携 帯性に強く影響するため特に重要である。しかし、実産業に おいて、充分な錠剤強度を有する成形体を得るための粉体の 混合比は経験則に基づいて決定されている。そのため、単一 材料の特性から混合物の成形体である錠剤の強度を予測する 方法が必要である。そこで、粒子の塑性変形性に着目し、異 種材料混合粉体の圧縮特性と成形性の関係を定量的に評価す ることを目的とした。粉体の塑性変形性パラメータとして、 Heckel 解析の塑性変形に由来する粉体固有の定数 K と 圧縮エ ネルギー解析における塑性変形エネルギー E,と弾性変形エ ネルギー E。の比率 E,/E。を用いた。 圧縮特性と成形体の引張 強度との定量的な関係を評価することで、得られた関係と単 一材料の圧縮特性に基づいて、混合粉体の圧縮性の予測式を 提案した。さらに、単一材料の圧縮特性と混合比を提案した 式に代入することで、 塑性変形性の異なる物質の混合粉体の 錠剤強度を予測することに成功した (Fig. 1)。

2.2 大小二成分混合付着性弾性粒子の圧縮シミュレーション [2]

サイズ二峰性を有する付着性弾性粒子の圧縮プロセスを離 散要素法 (DEM) により計算し,付着力と粒径比が圧縮特性, 成形体の空隙率,配位数,接触数におよぼす影響を検討した。 接触力モデルには付着性モデルである Hertz-Mindlin with JKR モデルを適用した。粒径比4において,先行研究と同様に非

2024年4月4日受付

付着性粒子が自然充填時に最密充填を示す小粒子混合割合は 0.3 だったが、付着性粒子では 0.2 に変化した。これは、小 粒子間の凝集に起因すると考えられる。また、粒径比4の圧 縮中の平均配位数は、粒径比1ならびに2の平均配位数に比 べて大きかった。理論的な規則充填において、粒径比が4.5 以上の場合、大粒子の間の空隙に小粒子が入り込む。粉体充 填はランダム充填となるため、 粒径比4 で大粒子間に小粒子 が入り込むことができたと考えられる。今回検討した粒子付 着性条件では粉体圧縮によって付着による疎充填が改善し, いずれの粉体層も同程度の空隙率を示した。圧縮成形後の粉 体層内部の接触数を Fig. 2 に示す。なお, C, F はそれぞれ大, 小粒子を意味し、接触数は比較のため非付着性条件の接触数 で割ることで規格化した。粒子の付着性が増大すると、大粒 子間接触は除荷後に著しく減少した。すなわち、粉体層内部 の接触状態が粒子間付着力の有無によって変化した。この結 果から、同じような空隙率を示す条件でも、付着性粒子では 成形体内部の粒子間接触状態は異なるということが明らかと なった。

2.3 大小二成分混合付着性弾塑性粒子の圧縮シミュレーション [3,4]

付着性粒子の弾塑性変形モデルである Edinburgh Elasto-Plastic Adhesion (EEPA) モデルを適用した DEM 計算を行っ た。粒子径比,粒子の塑性変形性 λ_p ,および二成分混合粉体 の混合割合が粉体の圧縮挙動と成形体構造に与える影響を検 討した。まず,異なる塑性変形性を有する粉体に小粒子を添 加し,圧縮エネルギーを解析した [3]。単分散条件および大 小二成分系ともに,粒子の塑性変形性 λ_p が増加すると,粉 体層の塑性変形性を表す E_p/E_e も増加した。また,小粒子の 添加によっても, E_p/E_e が増加した。弾性モデルの場合は小 粒子混合割合 (V_p)が 0.3 でもっとも空隙率が小さくなった

Fig. 1 Comparison between the experimental tensile strength and predicted lines as a function of the mass fraction of plastic powders for different powder mixtures

九州大学工学研究院 化学工学部門 (〒 819-0395 福岡市西区元岡 744 番地) Department of Chemical Engineering, Kyushu University (744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan)

^{*}連絡先 tyano@chem-eng.kyushu-u.ac.jp

Fig. 2 Normalized contact number of the powder bed with different surface energies

Fig. 3 Void fraction of powder beds as a function of $V_{\rm f}$

が、高い塑性変形性条件では $V_{\rm f} = 0.5$ がもっとも空隙率が小 さくなった。つまり、粒子の塑性変形性によって最密となる 小粒子混合割合が変化することが明らかとなった (Fig. 3)。 また、弾性粉体と塑性粉体の混合粉体において、粉体の混合 割合を変化させた粉体圧縮プロセスを計算し、巨視的および 微視的な粉体層特性を評価した [4]。このとき、異種材料間 の接触における塑性変形性を独自に定義した。数値解析の結 果、塑性粉体の割合が増加すると、弾性粒子同士の接触面積 が減少するのに対して、塑性粒子同士の接触面積は著しく増 加した。これは、塑性粒子のほうが圧縮力によって塑性変形 を起こしやすく、接触界面を増加させやすいことに起因する と考えられる。以上より、小粒子の塑性変形性が巨視的およ び微視的な粉体層特性の両方に影響をおよぼすことを実証し た。材料の塑性変形性に基づいて、最適な小粒子の添加割合 を決定することが重要であることが示された。

2.4 固体電解質の粒子径分布がイオン伝導経路の屈曲度に与 える影響

粉体圧縮の産業への応用として全固体電池を想定し、全固 体電池用電極の粉体圧縮プロセスを解析した。実験において、 高い塑性変形性を有する固体電解質である Li₆PS₅Cl (LPSCl) の粒子径分布を変化させ、相対密度と電気化学特性を評価し た。LPSCl は湿式ボールミル粉砕することで粉砕 LPSCl を得 た。粉砕処理により LPSCl 粒子径分布は分布幅が小さくなっ た。LPSCl 原末と粉砕した LPSCl の混合割合を変更して混合 し、得られた成形体をインピーダンス測定により評価した。 固体電解質の粒子径分布の分布幅が大きい場合、イオン伝導 の屈曲度が改善することが明らかとなった(Fig. 4)。さらに、 固体電解質の粒子径分布が電極構造におよぼす影響を調べる ため、実際の粒子径分布を考慮した DEM 計算により、得ら れた電極の空隙率や屈曲度を評価した。接触力モデルには EEPA モデルを適用し、塑性変形パラメータは 2.3 で定義し た方法により設定し、圧縮プロセスは無限平板を仮定して計

Fig. 4 Tortuosity of ionic conductive paths of solid electrolytes with difference size distributions

算した。相対密度は実験の傾向と一致したが、絶対値は実験 値と異なった。また、数値解析より得られた粉体層を用いて、 最短経路探索アルゴリズムにより屈曲度を評価した。このと き、イオンが通過する粒子数を考慮した修正屈曲度を定義し た。その結果、LPSCIの粉砕量が増加するにつれて通過する 粒子数が増加するため、屈曲度も増加することがわかった。 しかし、実験結果を完全に再現するには至らず、より忠実に 実在粉体を再現するために考慮すべきパラメータが存在する と考えられる。以上より、粒界抵抗を考慮した最短経路探索 と組み合わせた DEM 解析により、全固体電池用電極の構造 と電気化学特性の評価が可能であることが示唆された。

3. 今後の展望

本研究では、粒子の形状,混合均一性が圧縮特性に与える 影響を無視しているものの、これらのパラメータは圧縮挙動 に影響をおよぼすため、より実在の粉体を解析するために考 慮すべきである。また、電極構造評価において、離散要素法 により得た電極構造に反応輸送解析を連成することで、多様 な電極構造の電気化学特性を評価していく。

4. 謝辞

本研究を遂行するにあたり,終始多大なるご指導とご鞭撻 を賜りました大阪公立大学大学院工学研究科 綿野 哲 教授, 大崎 修司 准教授,仲村 英也 准教授に厚くお礼申し上げます。

文献リスト

- T. Yano, A. Oshiro, S. Ohsaki, H. Nakamura, S. Watano, A method for the tensile strength prediction of tablets with differing powder plasticities, Chem. Pharm. Bull. 72 (2024) 374–380.
- [2] T. Yano, S. Ohsaki, H. Nakamura, S. Watano, Numerical study on compression processes of cohesive bimodal particles and their packing structure, Adv. Powder Technol. 32 (2021) 1362–1368.
- [3] T. Yano, S. Ohsaki, H. Nakamura, S. Watano, Compression properties of bimodal powders with different plasticities in the elastoplastic powder compression process: A numerical analysis, Adv. Powder Technol. 34 (2023) 104245.
- [4] T. Yano, S. Ohsaki, H. Nakamura, S. Watano, Numerical analysis of compression properties of the binary mixture of powder with different particle plasticities, J. Soc. Powder Technol., Japan 61 (2024) 144–153.

(学位取得は2024年3月,大阪府立大学)

〈著者紹介〉

2024年3月大阪府立大学大学院工学研究科 物質科学系専攻化学工学分野博士後期課程修 了,博士(工学)。2022年4月~2024年3月 日本学術振興会特別研究員DC2。2024年4月 九州大学大学院工学研究院助教に着任。 専門:粉体圧縮,数値計算,全固体電池