水/エタノール/ブチルパラベン系の蒸発による液液相分離および 晶析過程の観察および解析

松島 直史1, 津川 侑平1, 門田 和紀2, 吉田 幹生3, 白川 善幸3*

Observation and Analysis of Liquid-liquid Phase Separation and Crystallization Processes of Water/Ethanol/Butylparaben by an Evaporation Technique

Naoya Matsushima¹, Yuhei Tsugawa¹, Kazunori Kadota², Mikio Yoshida³ and Yoshiyuki Shirakawa^{3*}

Received 20 August 2024; Accepted 4 October 2024

Liquid-liquid phase separation (LLPS) that occurs during crystallization is problematic because it has various adverse effects. In this study, water/ethanol/butylparaben solutions were evaporated and the phase change process was observed under an optical microscope to investigate the effects of initial composition and evaporation rate on the solution morphology. It was found that LLPS could be avoided by selecting an initial composition such that the evaporation path does not pass through the LLPS region. It was also found that the probability of LLPS occurrence, the size of the dispersed phase, and the final morphology of the crystals differ depending on how the evaporation path crosses the LLPS region. Furthermore, when the evaporation pathway passed near the boundary of the LLPS region, if the evaporation rate was high, even if LLPS occurred, the crystals returned to one phase during crystallization and crystallization could be carried out as usual. Thus, we obtained non-equilibrium-specific findings that are not indicated by the phase diagram alone.

Keywords: LLPS, Oiling out, Evaporative crystallization, Initial composition, Evaporation rate per initial volume.

1. 緒 言

晶析は結晶粒子の生成,分離精製に不可欠なプロセス である[1]。晶析は通常1相の溶液から行うが,医薬品 [2,3],農薬[4],食品[5,6]などさまざまなファインケミカ ルの晶析工程で液液相分離(LLPS)が発生することがあ る。この現象は工業的にはオイルアウトと呼ばれ,溶液 が溶質濃厚相と溶質希薄相に分離し,2つの異なる濃度 領域が形成される。LLPS はタンパク質や高分子溶液な どでよく知られているが,最近の研究では低分子有機化 合物の溶液でも起こることが報告されている[7,8]。

LLPS は晶析工程においてさまざまな影響をおよぼす。

(〒 610-0394 京都府京田辺市多々羅都谷 1-3)
Graduate School of Science and Engineering, Doshisha University
(1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0394, Japan)

* Corresponding Author yshiraka@mail.doshisha.ac.jp

れまで冷却速度[2,12]や初期溶質濃度を減少させる[2], 種晶を投入する[14,15],超音波処理を行う[16,17]など LLPS を抑制するさまざまな戦略が実証されてきた。そ の一方で LLPS の利用を試みる研究も行われてきた。 Veesler らは API の結晶化を研究し、LLPS 下で多数の小 さな結晶からなる準球状の単分散粒子を作製した[13]。 Yang らは LLPS 下で半透明の非多孔質相と透明の多孔質 相を持つサンドウィッチ型の結晶の形成に成功した[18]。 このように LLPS を利用することで通常の晶析では得ら れないような形態を持つ粒子を作製できる。高須賀らは, LLPS 下で得られる結晶の大きさが分散相の大きさに依 存し、攪拌速度によって結晶の大きさを制御できること を明らかにした[19]。さらに、田中らは各相に不純物が 不均一に分配されることを利用することで、結晶生成物 中の特定不純物の濃度を低減できたことを報告している [20]。

たとえば、最終製品が凝集し、結晶の純度の低下や、粒

子径の不均一を招くことがわかっている[9-12]。また,

LLPS 下では一次核生成および二次核生成を妨害するこ

とも報告されている[13]。さらに生じた分散相が攪拌装

置や反応器の壁に付着することにより、エネルギー損失

が大幅に増加する[8]。これらの理由から, 晶析工程において LLPS は一般的に抑制すべきものとされている。こ

 [□] 同志社大学大学院 理工学研究科 応用化学専攻 (〒 610-0394 京都府京田辺市多々羅都谷 1-3) Graduate School of Science and Engineering, Doshisha University (1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0394, Japan)
2 和歌山県立医科大学 薬学部 (〒 640-8156 和歌山市 7 番丁 25 番 1) School of Pharmaceutical Sciences, Wakayama Medical University (25-1 shichibancho, Wakayama 640-8156, Japan)
3 同志社大学 理工学部

Fig. 1 Molecular structure of butylparaben

相図は LLPS の全体像を示し、LLPS 抑制と利用のい ずれにおいても適切な運転条件を決定する上で非常に 有効である。相図上の LLPS 領域を入らないように操作 経路を設計することにより、オイルアウトを回避できる [21,22]。また、LLPS 領域を通過する場合も初期組成、す なわち操作経路を変えることにより、凝集の有無や、結 晶の形態に違いがみられたとの報告がなされている [16,23]。さらに以前、われわれの研究においてフェーズ フィールドシミュレーションを LLPS に適用し、蒸発に よる高分子膜形成過程を予測した結果、初期組成を変え ることで相図内の LLPS 領域を横切る組成経路が変わり, 異なる構造を持つ膜が得られることが明らかになった [24]。これらのことから LLPS 下において初期組成は最終 製品の形態に大きく影響をおよぼすといえる。晶析工程 では初期組成だけではなく、冷却速度や貧溶媒添加速度、 蒸発速度も最終製品の大きさや形態に影響をおよぼす [25-28]。たとえば冷却晶析において、冷却速度が大きい ほど LLPS が深刻になり、製品の純度および収率が下がっ たことが報告されており、冷却速度は LLPS 発生に深く 関係する[2,12]。しかし、温度変化の速度と LLPS の関係 が明らかになる一方で、蒸発速度や貧溶媒添加速度など 組成変化の速度と LLPS の関係についてはあまり検討さ れていない。そこで本研究では溶液を蒸発させ、LLPS や晶析などの相変化過程を光学顕微鏡で観察し、初期組 成と蒸発速度が形態変化におよぼす影響を検討した。対 象として、溶媒に水とエタノールを用い、これらに溶質 を加えた3元系の中で、すでに詳細な相図が報告されて いる系に注目した。その中で、ブチルパラベンを溶質の モデル化合物に選択した[29]。ブチルパラベンは毒性が 低く、防腐剤として長年医薬品や化粧品などに使われて いる[30]。なお、ブチルパラベン分子は Fig. 1 のような 構造をしており、結晶多形は存在しない[31]。

2. 実験方法

2.1 試料

ブチルパラベン (99.0%), エタノール (99.5%) はナ カライテスク株式会社から購入した。水は蒸留水を使用 した。ブチルパラベンは溶質であり, エタノールは良溶 媒, 水は貧溶媒である。

2.2 溶液の調製

初期組成は 20°C で 1 相となる(A)~(C)の組成で調製し

Fig. 2 Phase diagram at 20°C and initial composition

Table 1 Initial composition

Sample name	Butylparaben [wt%]	Ethanol [wt%]	Water [wt%]
(A)	30	67	3
(B)	30	60	10
(\mathbf{C})	30	45	25

Fig. 3 Solution evaporation method (a) $10 \ \mu$ L, $20 \ \mu$ L (b) $100 \ \mu$ L

た(Fig. 2) [29]。Fig. 2 は質量基準の相図である。初期 組成の詳細は Table 1 に示す。ブチルパラベン,エタノー ル,水を量り取り,容器の中に全試料と攪拌子を入れ, スターラーで攪拌を行った。攪拌は溶質の溶解が確認で きるまで行った。

2.3 溶液の蒸発

溶液はマイクロピペットを用いてスライドガラス上に 滴下して室温 20℃で放置した。溶液の蒸発速度は溶液 の比表面積が大きいほど大きくなる[23]。本研究では蒸 発速度を変えて実験を行うために,蒸発させる溶液の体 積を変えた。溶液の体積は各初期組成において 10 μL, 20 μL, 100 μL の 3 パターンで行った。10 μL と 20 μL で はスライドガラス上に普通に滴下したが, 100 μL では Fig. 3 に示すようにスライドガラス上に 1 mm の厚みを持 つテープを張り付け,その中に滴下した。

2.4 蒸発過程の観察

試料を載せたスライドガラスを素早くモニター付きの 光学顕微鏡(ケニス株式会社製, E5-1500T-LS4K)の台 にセットし,溶液が蒸発する過程を撮影した。撮影した 動画の解析には画像解析ソフトの ImageJ を用いた。実験 は各条件で6回ずつ行った。

2.5 蒸発経路の予測

この項では,初期組成から蒸発による残留液の組成変 化を蒸発経路として予測した。

蒸発質量流束 J_m の計算には一般的に Hertz-Knudsen equation が用いられる[32]。

$$J_{\rm m} = \alpha \sqrt{\frac{M}{2\pi R}} \left[\frac{P_{\rm s}}{\sqrt{T_{\rm l}}} - \frac{P_{\rm v}}{\sqrt{T_{\rm v}}} \right] \tag{1}$$

ここで*M*はモル質量,*R*は気体定数で8.314 J/(mol·K), T_1 は溶液の温度, P_s は飽和蒸気圧, T_v は蒸気温度, P_v は 気相の蒸気圧である。 $T_1 = T_v = 293.15$ K である。 α は蒸発 係数であり、1 と仮定する[33]。本研究では混合溶液を用 いるため、飽和蒸気圧に Raoult's law を用いた[34]。

$$P_{\mathbf{s},i} = P_{\mathbf{s},i}^* x_i \tag{2}$$

 $P_{s,i}$ は混合溶液における成分iの飽和蒸気圧, $P^*_{s,i}$ は純成分iの飽和蒸気圧, x_i は成分iのモル分率である。空気中に エタノールは存在しないとすると、エタノールの蒸発質 量流束 $J_{m,Ethanol}$ は次の式で計算できる。

$$J_{\rm m,Ethanol} = \sqrt{\frac{M_{\rm Ethanol}}{2\pi R T_{\rm l}}} P_{\rm s,Ethanol}^{*} x_{\rm Ethanol}$$
(3)

また,空気中に水が存在する場合,気相中の水蒸気圧と 飽和水蒸気圧の関係は以下の式が成り立つ[35]。

$$RH = \frac{P_{\rm v,Water}}{P_{\rm s,Water}} \times 100 \tag{4}$$

本研究では測定時の平均として *RH* は相対湿度で 50%とした。Eq. (2) と Eq. (4) を Eq. (1) に代入すると水の蒸発 質量流束 J_{m,Water} は次の式で計算できる。

$$J_{\rm m,Water} = \frac{1}{2} \sqrt{\frac{M_{\rm Water}}{2\pi R T_1}} P_{\rm s,Water}^* x_{\rm Water}$$
(5)

ブチルパラベンは蒸発しないと仮定すると, Eq. (3), Eq. (5) より, 時間 $t_n = n\Delta t$ におけるブチルパラベン, エタノール, 水それぞれの質量 W を計算できる。

$$W_{\text{Butylparaben},n+1} = W_{\text{Butylparaben},n}$$
 (6)

$$W_{\text{Ethanol,n+1}} = W_{\text{Ethanol,n}} - \sqrt{\frac{M_{\text{Ethanol}}}{2\pi RT_1}} P_{\text{s,Ethanol}}^* x_{\text{Ethanol,n}} \Delta t \quad (7)$$

$$W_{\text{Water,n+1}} = W_{\text{Water,n}} - \frac{1}{2} \sqrt{\frac{M_{\text{Water}}}{2\pi R T_1}} P_{\text{s,Water}}^* x_{\text{Water,n}} \Delta t$$
(8)

ただし,

$$x_{i,n} = \frac{\frac{W_{i,n}}{M_i}}{\sum \frac{W_{i,n}}{M_i}}$$
(9)

とする。

Eq. (6)~Eq. (8) より,溶液中の各成分の質量分率 x'_iの時間変化を計算し,蒸発経路を求めた。

$$x'_{i,n} = \frac{W_{i,n}}{\sum W_{i,n}} \tag{10}$$

計算により得られた各初期組成における蒸発経路を Fig. 4 に示す。計算で使用した物性は Table 2 に示す。

3. 実験結果および考察

3.1 蒸発経路の初期組成依存

3.1.1 初期組成(A)

初期組成(A)における溶液の形態変化を Fig.5 に示す。 溶液中に分散相が発生することはなく、1 相の溶液から 核生成した(Fig.5(a))。結晶は成長し続け、やがて完全 に溶液を覆った(Fig.5(b))。各体積において6回実験を 繰り返したが、LLPS は一度も起こらなかった。初期組 成(A)の蒸発経路は領域1(液相)から領域5(固液相) を通る(Fig.4(a))。蒸発経路が領域2(液液相)や領域 4(固液液相)を通らなかったため、LLPS が発生しな かったと考えられる。

貧溶媒晶析では貧溶媒を添加することで組成が領域1 (液相)から領域3(固液相)に移動し,結晶が得られ る。今回扱った水/エタノール/ブチルパラベンの相図で は貧溶媒を添加すると組成が領域3(固液相)に到達す る前に領域2(液液相)や領域4(固液液相)などのLLPS 領域を通過してしまう。しかし,蒸発晶析では領域2(液 液相)や領域4(固液液相)を通過せずに領域5(固液 相)に到達するような蒸発経路を設計することでLLPS を回避できることがわかった。

ここで前提として、液滴の体積を変えると、蒸発速度 が変化しなければならない。そこで、LLPSの発生しな い通常の蒸発晶析で結晶が析出するまでにかかる時間を 測定することで、溶液の体積によって蒸発速度が変わる のかを確認した。本研究では単位時間、初期体積あたり に蒸発する質量を蒸発速度と定義した。各体積における 析出するまでにかかる時間を Fig.6 に示す。Fig.6より、 溶液の体積が増えるにつれて析出するまでにかかる時間 も増加していることがわかる。析出するまでにかかる時間 間が短いということは、蒸発経路がすぐに領域5(固液 相)に到達することを意味するため、析出までにかかる 時間が短いほど蒸発速度が大きくなるといえる。よって、 溶液の体積が小さいほど蒸発速度が大きくなることを確 認できた。

次に,撮影した動画から単位面積あたりの核生成数を 測定した。各体積における単位面積あたりの核生成数を Fig.7に示す。Fig.7より,体積が増えるにつれて核生成 数は少なくなることがわかった。核生成数は過飽和度が 高いほど多くなるため[36,37],溶液の体積が増えるにつ れて過飽和度が小さくなっていることがわかった。した がって,溶液の体積を小さくするほど蒸発速度は大きく なり,高過飽和が形成される。以後の考察ではこの前提 で議論する。

3.1.2 初期組成(B)

初期組成(B)では,初期組成(A)と同様に1相の溶液から晶析することもあったが,LLPSが発生することもあった。同じ条件でもLLPSが発生する場合と発生しない場合があり,その原因としては3つ考えられる。1つ目は

Fig. 4 Predicted evaporation path. (a) Initial composition A (b) Initial composition B (c) Initial composition C

Table 2 Properties used to calculate evaporation pathways

Substance	Molecular mass [g/mol]	Saturated vapor pressure [kPa]
Water	18.01	2.3
Ethanol	46.07	5.8
Butylparaben	194.23	-

Fig. 5 Morphological change of solution at initial composition A.(a) Nucleation from solution (b) Crystal growth

この実験における蒸発速度のばらつきである。2つ目は 溶液濃度の不均一性である。液滴の蒸発過程を Fig.8 に 示す。Fig.8の破線より右上が液滴である。界面から LLPS が始まり, (Fig.8 (a)) その後対流が生じ, 液滴内

Fig. 6 Time required to crystallize in each volume of solution of initial composition A

部へと進行する様子が観察された(Fig. 8 (b))。これは蒸 発によって局所的に液滴の表面が過飽和になるため生じ る。そのため,液滴の観察位置によって結果が異なる可 能性があり,観察位置はすべて中央で統一した。3つ目 は分散相発生の確率のばらつきである。初期組成(B)では Fig. 4 (b)より,相分離線近傍を通っているため,バイノー ダル領域を通っている可能性が考えられる。バイノーダ ル領域では分散相も結晶のように核生成の障壁を乗り越 える必要があるため,確率的な現象になると考えられる。 したがって,1つ目と2つ目は通常の実験誤差として扱

Fig. 7 Number of nucleation in each volume of solution of initial composition A

Fig. 8 Droplet evaporation process. (a) LLPS occurrence from the interface. (b) Progression of LLPS

えるが、3 つ目については分散相の形成のタイミング、 そのサイズと濃度分布が関連し、複雑である。そこで今 回は確率的に取り扱った。各体積における LLPS が生じ た確率を Fig. 9 に示す。Fig. 9 より、溶液の体積が小さい ほど、すなわち蒸発速度が大きいほど LLPS の発生率は 高くなることがわかった。蒸発速度が大きいほど高過飽 和となり、LLPS が発生しやすくなったと考えられる。 Duらは冷却晶析下では冷却速度が大きいほど短時間で高 過飽和となり、LLPS が深刻になったことを報告してい る[12]。この文献では温度変化を駆動力として LLPS が発 生しているが、組成変化を駆動力とする本研究でも同様 の結果が得られることがわかった。

また、今回の実験において LLPS が生じた後の挙動は 2つのパターンに分けられた。一つは LLPS 下で晶析す るパターン(Fig. 10)ともう一つは 1 相に戻ってブチル パラベンが析出するパターンである(Fig. 11)。まず小さ な分散相が発生し(Fig. 10 (a))、時間経過とともに分散 相は数が減少するとともに大きくなり(Fig. 10 (b))、や がて LLPS 下で晶析した(Fig. 10 (c))。Fig. 10 (c)の破線 より下が結晶である。Fig. 10 (d)は分散相の成長メカニズ ムである。Fig. 10 (d)より、0sの2つの枠で囲んだ分散 相が合一して2sの下側の枠で囲んだ分散相となり、2s の2つの枠で囲んだ分散相が合一して14sの枠で囲んだ 分散相になっていることがわかる。このように分散相は

Fig. 9 Probability of LLPS occurrence in each volume of solution of initial composition B

合一しながら成長していた。この現象は LLPS に関する 研究でもよく報告されている[11,15,16,29]。Fig. 10 (e) は LLPS 下での結晶成長過程であり,結晶が成長する過程 で分散相が結晶内に取り込まれ,結晶中に分散相に沿っ た形の孔ができることが確認できた。初期組成(B)では蒸 発経路は相図上の LLPS 領域の上側を通る (Fig. 4 (b))。 相図の LLPS 領域の上側ではてこの原理より,溶質濃厚 相が連続相となり,溶質希薄相が分散相となる。よって 分散相が母相に比べて溶質希薄だったため,局所的に結 晶成長が妨げられ,分散相の存在していた場所が孔になっ たのではないかと考えられる。

2 つ目のパターンでは,LLPS が発生するが (Fig. 11 (a)),その後分散相は消失し,1相の溶液に戻る (Fig. 11 (b))。そして1相の溶液から晶析する (Fig. 11 (c))。一時 的に LLPS が発生するが,晶析時は1相のため孔のある 結晶は確認されなかった。

以上のように、LLPS後の挙動は2つの異なるパター ンが確認されたが、続いてLLPS後の挙動と蒸発速度と の関係を調べた。各体積におけるLLPS後1相に戻る確 率をFig.12に示す。Fig.12より、LLPS後に1相に戻る 確率は溶液の体積が小さくなるすなわち蒸発速度が大き くなるにつれて高くなったことがわかる。10 µL では LLPS後必ず1相に戻るが、100 µL ではLLPS後1相に 戻ることはなかった。よって、蒸発速度が小さいとLLPS が発生しているまま晶析し、蒸発速度が大きいとLLPS 後1相に戻ってから晶析する傾向にあることがわかった。

ここで蒸発速度の大小によって LLPS 後の形態変化が 異なったのかを考察する。Fig. 4 (b) より,初期組成(B)の 蒸発経路は領域1(液相)から領域2(液液相)を少し横 切り,領域4(固液液相),領域3(固液相)の順で通る ことがわかる。相図通りだと領域4(固液液相)に入っ た段階で晶析するため,LLPS が発生しているまま晶析 すると考えられる。蒸発速度が小さいときはLLPS 下で 晶析したため,相図通りの結果といえる。ではなぜ蒸発 速度が大きいと LLPS が起こった後1相に戻ったのか考 察する。相図は組成によって相の状態が決まっているが, これはあくまで平衡状態のものである。領域4(固液液

Fig. 10 Crystallization under LLPS at initial composition B. (a) Appearance of dispersed phases. (b) Growth of dispersed phases. (c) Crystallization. (d) Growth mechanism of dispersed phases. (e) Crystal growth process

Fig. 11 Crystallization after returning to one phase at initial composition B. (a) Appearance of dispersed phases. (b) Disappearance of dispersed phases. (c) Crystallization

相)に入った瞬間に結晶が析出するのではなく,実際に は核生成が起こるまでにも時間がかかり,結晶が析出す るまでにも経路は進行していることが報告されている [16]。これを踏まえると,本研究では蒸発速度が大きい ときは領域4(固液液相)に入って核生成するまでの間 に蒸発経路が領域3(固液相)に到達してしまったため, 1相に戻ってから晶析したと考えられる。

以上より、蒸発速度を大きくすることで、LLPS は起

Fig. 12 Probability of returning to one phase after LLPS in each volume of solution of initial composition B

こりやすくなってしまうが、LLPS後1相に戻るため、 晶析時にはLLPSを回避でき、孔のない結晶を得ること ができる。一方、蒸発速度が小さいとLLPSは起こりに くくなるが、LLPSが発生した場合、晶析時もLLPSが発 生しているため溶質希薄な分散相が結晶に取り込まれ、 孔の空いた結晶ができてしまい、最終製品の品質に影響 をおよぼす可能性がある。相図を用いてLLPSを回避す る場合、LLPS領域を避けるように経路を設計するのが 一般的であるが、相図上のLLPS領域を横切る速度を変 えることで晶析時に1相にできることがわかった。この ように相図だけでは示されないような非平衡特有の知見 が得られた。

3.1.3 初期組成(C)

初期組成(C)ではすべての実験で LLPS が発生し, LLPS が発生しないこともあった初期組成(B)とは異なる結果と なった。以前われわれは高分子溶液の蒸発過程を予測し た結果,蒸発経路が少ししか LLPS 領域に入っていない 場合,十分な濃度揺らぎや時間が与えられず LLPS が起 こらなかったが,蒸発経路が LLPS 領域に深く入った場 合は LLPS が発生した[24]。初期組成(B)では蒸発経路は 領域 2 (液液相)を少ししか通っていないが,初期組成 (C)では蒸発経路は領域 2 を深く通っており (Fig. 4),初 期組成(C)においては初期組成(B)と異なりすべてにおい て LLPS が発生したのは妥当だと考えられる。

溶液の形態変化を Fig. 13 に示す。分散相が生じ (Fig. 13 (a)),時間経過に伴って成長し (Fig. 13 (b)), LLPS 下 で析出した (Fig. 13 (c))。Fig. 13 (c)の破線より下が結晶 である。初期組成(B)の蒸発速度が小さいときと同様の挙 動を示すことがわかる。しかし, Fig. 10 と Fig. 13 を比較 すると,初期組成(C)の方が初期組成(B)に比べて分散相 が大きい。そこで,初期組成(B)と初期組成(C)の結晶化 直前における分散相径の分布と分散相の数を ImageJ で解 析した。分散相径はそれぞれ 500 個測定し,分布を取っ た。分散相の数は 4 mm² の区間内に存在する分散相の数 を数え,単位面積あたりの分散相数を求めた。初期組成(B)と初期組成(C)における分散相径の分布を Fig. 14 に示 す。Fig. 14 より,分散相径は初期組成(B)に比べて初期組

成(C)の方が分布が広く,全体的に大きいことがわかる。 初期組成(B)と初期組成(C)における分散相の数を Fig. 15 に示す。Fig. 15 より,分散相の数は初期組成(B)に比べて 初期組成(C)の方が少ない。初期組成(B)より初期組成(C) の方が大きい分散相が多く,分散相の総数が少ないこと から分散相がより合一して成長したと考えられる。初期 組成(C)の方が LLPS 領域に深く入っており,十分に分散 相が成長する時間が与えられたと考えられる。それに加 え,初期組成(B)では蒸発経路は相分離線(領域1と領域 2 の境界および領域4 と領域5の境界)の近傍を通り, 初期組成(C)では相分離線の遠方を通る(Fig. 4)。相分離 線遠方は相分離線近傍より分散相が生じるまでの誘導時 間が短いため[38],さらに分散相の成長時間が長くなっ たと考えられる。

Fig. 13 (d) は初期組成(C)での LLPS 下における結晶成 長過程であり,初期組成(B)と同様,溶質希薄な分散相を 避けながら結晶が成長していた。Fig. 10 (e) と比較する と,初期組成(B)より分散相が成長して大きくなったた め,結晶にできた孔も大きくなったことがわかる。この ように初期組成,すなわち蒸発経路が異なることで分散 相の大きさが変わり,結晶の最終形態にも影響をおよぼ すことがわかった。

3.2 LLPS がブチルパラベンの晶析時間におよぼす 影響

全初期組成の各体積における晶析するまでの時間を Fig. 16 に示す。Fig. 16 より、どの体積においても、LLPS が起こらない初期組成(A)と LLPS が起こる初期組成(C) を比較すると、初期組成(C)の方が晶析するまでに時間が かかっていることがわかる。LLPS が晶析するまでの時 間を長くしている可能性が考えられるが、初期組成(A)と 初期組成(C)では蒸発経路が異なるため、この結果だけで は断定できない。Fig. 16より,初期組成(A)と初期組成 (C)では体積が増えるにつれて晶析するまでの時間も長く なっているが, 初期組成(B)では 10 µL の方が 20 µL より 短くなっている。Fig.9より、初期組成(B)の LLPS の発 生率は 10 µL では 100%, 20 µL では 50%, 100 µL では 33%である。10 µL では LLPS の発生率が高いため, 20 µL より晶析までの時間が長くなったと考えられる。 初期組成(B)の 20 µL と 100 µL のデータを LLPS が起こっ た時と LLPS が起こらなかった時それぞれの平均時間 取った (Fig. 17)。Fig. 17より, LLPS が起こった時の方 が LLPS が起こらなかった時に比べてはるかに長いこと がわかった。よって LLPS が晶析までにかかる時間を長 くしていることが明らかになった。この結果はほかの文 献で報告された結果と一致している[13]。

Fig. 12 より,初期組成(B)の10 µL では100%の確率で LLPS が一時的に起こり,晶析時は1相であった。しか し,Fig. 16 で同体積のデータと比較すると,LLPS が起 こったまま晶析した初期組成(C)の同体積における晶析ま での時間とほぼ同じであり,LLPS が一切起こらなった 初期組成(A)と比較すると2倍以上長い時間を示した。 よって LLPS 後1相に戻っても一時的にLLPS が起こっ

Fig. 13 Morphological change of solution at initial composition C. (a) Appearance of dispersed phases. (b) Growth of dispersed phases. (c) Crystallization. (d) Crystal growth process

Fig. 14 Diameter distribution of dispersed phases just before crystallization

てしまうと晶析するまでにかかる時間は長くなってしま うことがわかる。したがって初期組成(B)において蒸発速 度を大きくすると晶析時の LLPS は回避でき,孔のない 結晶は得られるが,晶析するまでにかかる時間が長くな ることは避けられないことがわかった。

Fig. 15 Number of dispersed phases just before crystallization

4. 結 言

水/エタノール/ブチルパラベン溶液を蒸発させ,相変 化過程を光学顕微鏡で観察し,初期組成と蒸発速度が溶 液の形態変化におよぼす影響を検討した。蒸発経路が

Fig. 16 Time required to crystallize in each volume of solution of total initial composition

LLPS 領域を通らないような初期組成を選択することで、 LLPS を回避できることがわかった。また、蒸発経路が LLPS 領域をどのように横切るかで LLPS の発生率や分散 相の大きさ、結晶の最終形態が異なることが推察できる。 さらに蒸発経路が LLPS 領域の境界付近を通る場合、蒸 発速度による違いも見られた。蒸発速度が小さいと LLPS は起こりにくくなるが、LLPS が発生した場合、晶析時 も LLPS が発生しており、最終製品に孔が開いてしまっ た。一方蒸発速度が大きいと LLPS は起こりやすくなる

Fig. 17 Time required to crystallize in each volume of solution of initial composition B

が、晶析時には1相に戻り、LLPS を回避できることが わかった。また、LLPS が発生すると晶析時に1相に戻っ ても核生成にかかる時間が長くなることがわかった。こ のように相図だけでは示されないような非平衡特有の知 見が得られた。

[謝辞]本研究は JSPS 科研費 JP24K08141 ならびに JST 次世代研究者挑戦的研究プログラム JPMJSP2129 の支援 を受けたものである。ここに謝意を表する。

Nomenclature

 $[kg/(m^2 \cdot s)]$

 $[J/(mol \cdot K)]$

[kg/mol

[K]

[K

[Pa

	Pv	:	vapor pressure of gas phase	[Pa]
]	α	:	evaporation coefficient	[-]
]	$P^*_{\mathrm{s},i}$:	Saturated vapor pressure of pure component I	[Pa]
]	RH	:	relative humidity	[%]
	X_i	:	Molar fraction of component <i>i</i>	[-]
	x'_i	:	Mass fraction of component <i>i</i>	[-]

References

- W. Beckmann, Nucleation phenomena during the crystallisation and precipitation of Abecarnil, J. Cryst. Growth 198 (1999) 1307–1314.
- [2] J. Lu, Y. P. Li, J. Wang, Z. Li, S. Rohani, C. B. Ching, Study on the oiling-out and crystallization for the purification of idebenone, Org. Process Res. Dev. 16 (2012).
- [3] S. Veesler, L. Lafferrère, E. Garcia, C. Hoff, Phase transitions in supersaturated drug solution, Org. Process Res. Dev. 7 (2003) 983–989.
- [4] K. Li, S. Wu, S. Xu, S. Du, K. Zhao, L. Lin, P. Yang, B. Yu, B. Hou, J. Gong, Oiling out and polymorphism control of pyraclostrobin in cooling crystallization, Ind. Eng. Chem. Res. 55 (2016) 11631–11637.
- [5] M. Svärd, S. Gracin, Å. C. Rasmuson, Oiling out or molten hydrate—Liquid-liquid phase separation in the system vanillin-water, J. Pharm. Sci. 96 (2007) 2390–2398.
- [6] D. Suzuki, Y. Sato, H. Nishiura, R. Harada, H. Kamasaka, T. Kuriki, H. Tamura, A novel extraction method for aroma isolation from dark chocolate based on the oiling-out effect, Food Anal. Methods 12 (2019) 2857–2869.

- [7] J. Lu, Y. P. Li, J. Wang, G. Bin Ren, S. Rohani, C. B. Ching, Crystallization of an active pharmaceutical ingredient that oils out, Sep. Purif. Technol. 96 (2012) 1–6.
- [8] Z. Meng, Y. Huang, S. Cheng, J. Wang, Investigation of oiling-out phenomenon of small organic molecules in crystallization processes: A review, ChemistrySelect 5 (2020) 7855–7866.
- [9] S. Daver, N. Rodeville, F. Pineau, J. M. Arlabosse, C. Moureou, F. Muller, R. Pierre, K. Bouquet, L. Dumais, J. G. Boiteau, I. Cardinaud, Process development and crystallization in oiling-out system of a novel topical antiandrogen, Org. Process Res. Dev. 21 (2017) 231–240.
- [10] V. Bhamidi, K. Dumoleijn, D. Guha, S. K. Kirk, A. De Bruyn, A. K. Pymer, From experiments and models to business decisions: A scale-up study on the reactive crystallization of a crop protection agent, Org. Process Res. Dev. 23 (2019) 342–354.
- [11] D. Duffy, N. Cremin, M. Napier, S. Robinson, M. Barrett, H. Hao, B. Glennon, In situ monitoring, control and optimization of a liquid-liquid phase separation crystallization, Chem.

 $J_{\rm m}$

М

R

 T_1

 $T_{\rm v}$

 P_{c}

: evaporation mass flux

: solution temperature

: saturated vapor pressure of solution

: steam temperature

: molecular mass

: gas constant

Eng. Sci. 77 (2012) 112-121.

- [12] Y. Du, H. Wang, S. Du, Y. Wang, C. Huang, Y. Qin, J. Gong, The liquid-liquid phase separation and crystallization of vanillin in 1-propanol/water solution, Fluid Phase Equilib. 409 (2016) 84–91.
- [13] S. Veesler, E. Revalor, O. Bottini, C. Hoff, Crystallization in the presence of a liquid-liquid phase separation, Org. Process Res. Dev. 10 (2006) 841–845.
- [14] K. J. Fraunhoffer, A. J. Delmonte, G. L. Beutner, M. S. Bultman, K. Camacho, B. Cohen, D. D. Dixon, Y. Fan, D. Fanfair, A. J. Freitag, A. W. Glace, F. Gonzalez-Bobes, M. Gujjar, M. W. Haley, M. R. Hickey, J. Ho, V. Iyer, P. Maity, S. Patel, V. W. Rosso, M. A. Schmidt, J. M. Stevens, Y. Tan, C. Wilbert, I. S. Young, M. Yu, Rapid development of a commercial process for linrodostat, an indoleamine 2,3-dioxygenase (IDO) inhibitor, Org. Process Res. Dev. 23 (2019) 2482–2498.
- [15] E. Deneau, G. Steele, An in-line study of oiling out and crystallization, Org. Process Res. Dev. 9 (2005) 943–950.
- [16] L. Wang, Y. Bao, Z. Sun, V. J. Pinfield, Q. Yin, H. Yang, Investigation of agglomeration in the presence of oiling out in the antisolvent crystallization process, Ind. Eng. Chem. Res. 60 (2021) 4110–4119.
- [17] Z. Gao, F. Altimimi, J. Gong, Y. Bao, J. Wang, S. Rohani, Ultrasonic irradiation and seeding to prevent metastable liquid-liquid phase separation and intensify crystallization, Cryst. Growth Des. 18 (2018) 2628–2635.
- [18] H. Yang, H. Chen, Å. C. Rasmuson, Sandwich crystals of butyl paraben, CrystEngComm 16 (2014) 8863–8873.
- [19] M. Takasuga, H. Ooshima, Control of crystal size during oiling out crystallization of an API, Cryst. Growth Des. 14 (2014) 6006–6011.
- [20] K. Tanaka, H. Takiyama, Effect of oiling-out during crystallization on purification of an intermediate compound, Org. Process Res. Dev. 23 (2019) 2001–2008.
- [21] S. Amari, A. Okude, S. Kudo, H. Takiyama, Operation strategy for avoiding oiling-out during the anti-solvent crystallization based on ternary phase diagram, ChemistrySelect 7 (2022).
- [22] X. Li, Q. Yin, M. Zhang, B. Hou, Y. Bao, J. Gong, H. Hao, Y. Wang, J. Wang, Z. Wang, Process design for antisolvent crystallization of erythromycin ethylsuccinate in oiling-out system, Ind. Eng. Chem. Res. 55 (2016) 7484–7492.
- [23] M. Sun, S. Du, M. Chen, S. Rohani, H. Zhang, Y. Liu, P. Sun, Y. Wang, P. Shi, S. Xu, J. Gong, Oiling-out investigation and morphology control of β-alanine based on ternary phase diagrams, Cryst. Growth Des. 18 (2018) 818–826.
- [24] Y. Uchida, H. Uyama, A. Minakuchi, K. Matsunobu, M. Yoshida, Y. Shirakawa, Phase-field simulation with semiempirical and effective parameters in a case study from PVA

membrane syntheses by phase separation and drying process, J. Chem. Eng. Jpn. 54 (2021) 612–619.

- [25] S. K. Abdul Mudalip, F. Adam, J. Parveen, M. R. Abu Bakar, N. Amran, S. Z. Sulaiman, R. Che Man, Z. I. Mohd Arshad, S. M. Shaarani, Effect of cooling rates on shape and crystal size distributions of mefenamic acid polymorph in ethyl acetate, in: IOP Conf Ser Mater Sci Eng, Institute of Physics Publishing (2017).
- [26] M. Kitamura, M. Sugimoto, Anti-solvent crystallization and transformation of thiazole-derivative polymorphs—I: Effect of addition rate and initial concentrations, J. Cryst. Growth 257 (2003) 177–184.
- [27] J. S. Wey, P. H. Karpinski, Handbook of Industrial Crystallization, 10 - Batch crystallization, 2nd Edi. (2002).
- [28] R. Gregorio, D. S. Borges, Effect of crystallization rate on the formation of the polymorphs of solution cast poly(vinylidene fluoride), Polymer (Guildf) 49 (2008) 4009–4016.
- [29] H. Yang, Å. C. Rasmuson, Investigation of batch cooling crystallization in a liquid-liquid separating system by PAT, Org. Process Res. Dev. 16 (2012) 1212–1224.
- [30] C. Charnock, T. Finsrud, Combining esters of para-hydroxy benzoic acid (parabens) to achieve increased antimicrobial activity, J. Clin. Pharm. Ther. 32 (2007) 567–572.
- [31] H. Yang, Å. C. Rasmuson, Nucleation of butyl paraben in different solvents, Cryst. Growth Des. 13 (2013) 4226–4238.
- [32] L. Zhang, Y. R. Li, L. Q. Zhou, C. M. Wu, Comparison study on the calculation formula of evaporation mass flux through the plane vapour-liquid interface, J. Phys. Conf. Ser. 925 (2017) 1–6.
- [33] D. Schreiber, B.-E. Rudolph, Two methods for measuring the surface temperature of evaporating liquids and results obtained with water, J. Colloid Interface Sci. 92 (1982) 181– 188.
- [34] Z. C. Wang, Relationship among the Raoult law, Zdanovskiistokes-Robinson rule, and two extended Zdanovskii-stokes-Robinson rules of Wang, J. Chem. Eng. Data 54 (2009) 187– 192.
- [35] R. E. Davis, G. R. McGregor, K. B. Enfield, Humidity: A review and primer on atmospheric moisture and human health, Environ. Res. 144 (2016) 106–116.
- [36] A. E. Nielsen, Nucleation and growth of crystals at high supersaturation, Kristall Und Technik 4 (1969) 17–38.
- [37] V. K. Lamer, R. H. Dinegar, Theory, production and mechanism of formation of monodispersed hydrosols, J. Am. Ceram. Soc. 72 (1950) 4847–4854.
- [38] L. Zhang, Y. Peng, L. Zhang, X. Lei, W. Yao, N. Wang, Temperature and initial composition dependence of pattern formation and dynamic behavior in phase separation under deep-quenched conditions, RSC Adv. 9 (2019) 10670– 10678.