デバイ・ヒュッケル近似,Debye-Hükel近似
Debye-Hükel approximation
もともとは,イオンの活量に関するデバイ・ヒュッケルの極限法則を導く際におかれた近似であり,zeψ ≪ kT の条件をさす。ここで,z は電荷数,e は電気素量,ψ は電位,k はボルツマン定数,T は絶対温度であり,言い換えれば(静電エネルギー)≪(熱エネルギー)の条件である。
極限法則ではイオン周りの電位に関するポアソン式と,熱的平衡を与えるボルツマン分布則を組み合わせたポアソン・ボルツマン方程式をもとにしているが,電気二重層内の電位分布,イオン分布も同式で記述できるから,本近似を用いることで電気二重層の状態や,粒子間の静電的斥力などが解析的に表現できる。
→
静電反発ポテンシャル,電気二重層
【広告】